Scalable Geocast Based MANETs

Robert J. Hall

AT&T Labs Research

Intro and Motivation

- Goal: bring timely information to every operator in the field, anytime/anywhere
- Observation 1: traditional approaches to field data networking in MANETs is problematic
 - Node mobility + terrain make routing topology dynamic and fragile, maint. overhead burdensome
 - Traditional unicast-based information distribution patterns do not scale well with (geographic) node density in MANETs

Intro and Motivation

- Observation 2: Worst scalability problems stem from need to send same information to all in an area
 - Common operating picture problem
 - Real time location and telemetry tracking of all to all
 - Mutual distribution of annotations and collaboration

information

- Field file transfer
 - Transfer of imagery, maps, data to all operators in area

Solution Key Ideas

- Key Idea 1: Build field network on top of a Scalable Ad Hoc Geocast Protocol (SAGP) ¹
 - Not built on IP, but can interoperate with it
 - More scalable than flooding (lg n vs n)
 - Side benefit: geocast can discover a fresh unicast route for efficient 1-1 replies (reverse path forwarding)
- Key Idea 2: Exploit efficient 1-to-many geographic multicast for efficient applications
 - Field Common Operating Picture (FCOP) Protocol²
 - Geocast File Transfer (GFT) Protocol ³
- 1. IEEE Trans. Mobile Computing, 2011
- 2. MILCOM 2012
- 3. MILCOM 2013

SAGP Heuristics

- Retransmit P iff (M or T or CD) and In FZ
- M: Heard < M transmissions of P?
- T: All transmissions at least T distant?
- CD: Am I closer to CGR than all heard?
- Forwarding Zone (FZ) = union of two circles

CGR = Center of Geocast Region

SAGP Is Scalable

- Claim: when all n devices can hear each other,
 SAGP uses O(lg n) transmissions/geocast average
- Proof Sketch:
 - Cost is dominated by CD heuristic
 - Each transmission approximately halves number of devices closer to CGR than transmitter
- This is the most critical special case

The FCOP Algorithm *

- For a device M to monitor region MR:
 - Initially set Recent Response Cache (RRC) to empty
 - Once per P seconds, geocast query message to MR
 - When device receives a query message Q:
 - Remove msgs from RRC older than P ε
 - If no msg remains in RRC that was sent to a region containing location L of origin of Q, then
 - Geocast a response message w to targetRegion(L)
 - Record timestamped w in RRC
 - When device receives any response message, record info from it in client database for use by application

^{*} See MILCOM 2012 paper for details

FCOP Algorithm Evaluation

- In dense *COP configuration*, FCOP uses *O(n lg n)* bytes per P seconds, because each of *n* devices sends two geocasts per P sec (1 small query, 1 response)
- Major improvement over $\Omega(n^2)$ of other approaches
- Experimental evaluation: GC1/PSCommander prototype tested for n = 2 ... 32 devices in the field
- Measured bytes / sec transmitted over the (common) network
- Implemented using 802.11 (ad hoc WiFi) at 2.4 GHz

COP configuration = each device monitors all other devices

FCOP Experiment Results (Excerpt)

Geocast File Transfer (GFT) *

- File transfer to all in an area
- Novel protocol key ideas:
 - Geocast all file chunks in order

- Receivers then request re-sends of missed chunks
- Sender waits and pools requests
- Sender geocasts requested chunks in order
- Results:
 - $-O(k \lg n)$ bytes transmitted vs n 2 for traditional
 - Subconstant time per byte per recipient

^{*} See MILCOM 2013 paper for details

GFT Results (Excerpt)

Fig. 7. Scenario 1: GFT Normalized Bytes vs # devices

Fig. 10. Scenario 1: GFT Normalized Time vs # devices

Fig. 12. Scenario 1: GFT Success vs #devices vs packet loss probability

Fig. 11. Scenario 2: GFT Normalized Time vs # devices

Summary

- Key Idea 1: Build field network on top of a Scalable Ad Hoc Geocast Protocol (SAGP) ¹
 - Not built on IP, but can interoperate with it
 - More scalable than flooding (lg n vs n)
 - Side benefit: geocast can discover a fresh unicast route for efficient 1-1 replies (reverse path forwarding)
- Key Idea 2: Exploit efficient 1-to-many geographic multicast for efficient applications
 - Field Common Operating Picture (FCOP) Protocol²
 - Geocast File Transfer (GFT) Protocol ³
- 1. IEEE Trans. Mobile Computing, 2011
- 2. MILCOM 2012
- 3. MILCOM 2013

